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KEY POINTS

e Bedside ultrasonography is now universal in the trauma intensive care unit (ICU) for rapid
diagnosis in patients with unstable hemodynamics, for assessment of volume status, and
for performing invasive procedures in the ICU.

e ICU monitors are becoming progressively more advanced and less invasive. Examples of
modern monitoring technology include waveform analysis, complexity analysis, electrical
velocimetry, smart monitoring, and telemonitoring.

Advanced therapies now employed to improve patient outcomes in modern critical care
include active thermoregulation, extracorporeal gas exchange, and extracorporeal blood
purification.

Trauma ICU patients commonly have large open wounds related to their injury or body
cavities that require temporary closure. Negative pressure wound management has
been widely used in the management of these large wounds and open body cavities.

Novel technologies and therapies in critical care should be systematically evaluated by
applying the recently defined Innovation Development Exploration Assessment Long-
term study (IDEAL) criteria. Revisions to the US Food and Drug Administration approval
system should also be considered to assure continued innovation in this field.
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INTRODUCTION

Postoperative surgical and trauma patients in the mid-1900s benefitted from the
nexus of several concepts that led to the establishment of intensive care units
(ICUs) in major medical centers across the country:

e Cohorting critically ill patients in a specialized unit

e Use of mechanical ventilation to support patients with respiratory failure

e Use of both non-nvasive and invasive hemodynamic monitors

e Frequent measurement of blood gas values and other laboratory parameters.

The history of these advances and their application in modern critical care has been
thoroughly reviewed by multiple expert authors.’™> What sets the trauma ICU apart
from other critical care environments is the frequent need for ongoing massive resusci-
tation and the periodic use of the ICU as an extension of the operating room for invasive
procedures.® Inthe trauma ICU, particular emphasis is placed on frequent reassessment
of patients with severe injuries, on continuing the damage control therapy initiated in the
emergency department or the operating room, and on providing an environment for the
application of standardized treatment protocols for managing a range of clinical prob-
lems from traumatic brain injury to thromboprophylaxis in the acutely injured patient.”-

This care environment is characterized by a high degree of specialization and the use of
advanced technologies; however, recent studies have also highlighted the importance of
simple practices such as hand hygiene and a daily rounds checklist for improving
outcomes.®° Furthermore, the benefits of ICU-based therapies are widely recognized
as beneficial in both the developed and developing world, which should push researchers
to continue to explore novel therapies that are both cost-conscious and scalable.’

The following paragraphs describe a range of technologies that have transformed
the care of trauma patients in the ICU in recent years. Although in some instances,
the technology is not specific to a trauma population, the authors have chosen to
discuss these particular applications, because they represent recent advances that
have either advanced or revolutionized the care provided in the trauma ICU.

ULTRASOUND-BASED APPLICATIONS

Surgeon-performed ultrasound was first introduced as a real-time diagnostic tool in the
early 1990s. Since that time, there has been a steady rise in the use of ultrasound for
a range of applications in critically ill patients, to the point where ultrasound systems
are ubiquitous in ICUs today. Surgeons and other intensivists caring for trauma patients
use the various types of ultrasound equipment shown in Table 1 on nearly a daily basis.'?

Several reviews on surgeon and intensivist-performed ultrasound provide a compre-
hensive overview of this broad topic.''® The following sections focus on the most
common and emerging uses for ultrasound as a diagnostic, monitoring, and thera-
peutic tool in critically ill trauma patients.

Ultrasound for Diagnosis and Monitoring

Focused assessment with sonography for trauma examination

The Focused Assessment with Sonography for Trauma (FAST) examination was first
promoted by Rozycki and colleagues.'® This study is performed in the trauma bay,
where a low-frequency ultrasound probe is used to assess for fluid in the right upper
quadrant, left upper quadrant, pericardium, and pelvis.?° This examination has been
adopted by trauma surgeons across the world and has also been used to good effect
in combat casualty triage.?’
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Table 1
Types of ultrasound transducers commonly used in the ICU
Probe Type Frequency Range® Features ICU Applications
Linear array 13-5 MHz Higher frequency range CVL insertion
High resolution PICC/PIV insertion
Shallow penetration A-line insertion
Variable footprint Evaluation for DVT
1 depending on
the probe design
Small curved array 8-5 MHz Intermediate Follow-up FAST
frequency range IVC evaluation
Medium resolution Drain placement
k Moderate penetration Thoracic imaging
! Small footprint
Large curved array 5-2 MHz Lower frequency range Follow-up FAST
Lower resolution IVC evaluation
~ Deeper penetration Drain placement
h Wide footprint
Phased array 8-1 MHz Wide frequency range Follow-up FAST
Variable resolution IVC evaluation
Variable penetration Drain placement
Small footprint Thoracic imaging
Cardiac imaging

Abbreviations: CVL, central venous line; DVT, deep venous thrombosis; FAST, focused assessment
with sonography for trauma; IVC, inferior vena cava; PIV, peripheral intravenous line.

@ By convention frequency ranges are listed from high to low frequency.

Photos courtesy of Sonosite, Inc., Bothell, WA; with permission.

Over time, the FAST examination has largely replaced diagnostic peritoneal lavage
for identifying intra-abdominal fluid in trauma patients. Furthermore, with the addition
of chest windows, the extended FAST can also rapidly diagnose a pneumothorax or
hemothorax. By consensus, the learning curve for this examination has been defined
as 200 examinations, of which at least half of these examinations should have positive
findings.??2® The sensitivity and specificity of this study for identifying intraperitoneal
fluid in a blunt trauma patient range from 62% to 89% and 95% to 100%, respectively,
depending on the patient population being evaluated, the experience of the sonogra-
pher, and the comparative gold standard study.2°

The role of the FAST examination in penetrating abdominal trauma remains unclear,
as neither a positive nor negative result appears to reliably predict the need for operative
intervention.?4 In contrast, in patients with penetrating anterior thoracoabdominal
trauma, the subxyphoid window is very useful for identifying pericardial fluid warranting
operative exploration. This examination has a sensitivity of up to 100% and specificity of
97%25 with false-negatives primarily arising when pericardial blood decompresses into
the pleural space.?®

At the authors’ institutions, the FAST examination is typically performed during the
trauma evaluation by emergency medicine and general surgery residents, with staff
oversight. All images are saved for quality control review using subsequent computed
tomography (CT) imaging or operative findings for determination of false-negative and
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false-positive examinations. Management decisions based on the FAST findings are
directly supervised by the staff trauma surgeon, who views the FAST images in real time.

In the ICU, follow-up FAST examinations can detect interval development of signif-
icant hemoperitoneum?” and can identify complications of nonoperative management
of solid organ injuries.?® Thus, repeated FAST examinations can be an important diag-
nostic adjunct early in the ICU management of trauma patients.

Intensivist-diagnosed deep venous thrombosis

Trauma patients are at high risk for developing thromboembolic complications. At the
same time, obtaining timely diagnostic ultrasound evaluation of the extremities is not
always possible. Recent evidence suggests that intensivists trained in basic ultra-
sound can diagnose deep venous thrombosis (DVTs) with a high degree of accuracy
thereby accelerating the treatment of this complication.?®

Thoracic ultrasound

Thoracic ultrasound has gained increased acceptance in the ICU as a diagnostic
tool.®° To minimize rib interference, a phased array or curved array probe with a small
footprint is typically used for these examinations. The authors use chest ultrasound in
the following manner:

e To identify a pneumothorax or hemothorax that needs to be drained acutely
e To differentiate a finding of consolidation versus effusion on radiograph.

Ultrasound to assess hypotension/fluid status

Both comprehensive and focused ultrasound examinations have been described as
an adjunct to hemodynamic monitoring in trauma patients in the ICU. In particular,
ultrasound can be useful in 2 scenarios:

e Hypotensive trauma patients in the ICU without an obvious source of hemody-
namic instability

e Critically ill polytrauma patients with end-organ dysfunction and an unclear intra-
vascular volume status.

In an acutely hypotensive trauma patient in the ICU, both transthoracic and transe-
sophageal ultrasound examinations have been advocated. Using a subxyphoid
approach, inferior vena cava (IVC) diameter measurement with ultrasound can discrim-
inate patients responsive to volume resuscitation as compared with nonresponders.®'
Alternatively, a more comprehensive transesophageal echocardiography (TEE) exam-
ination can more specifically pinpoint the etiology of the hypotension and can guide
both therapeutic interventions and ongoing resuscitation.’® The downside of the latter
approach is the extensive additional training required to gain proficiency and the need
for specialized equipment. However, as experience with ultrasound among intensivists
broadens, use of TEE in the ICU will likely increase with time. In addition, relatively inex-
pensive disposable TEE probes such as the ClariTEE (ImaCor, Incorporated, Garden
City, NY, USA) may lower barriers to using this approach.

In the more chronic trauma ICU patient, ultrasound imaging can be used to assess
the patient’s cardiac function and volume status. Two groups have advocated similar
approaches using portable ultrasound technology in which several cardiac and IVC
views are obtained to assess the patient’s current physiologic state (Fig. 1).3273* No
patient outcomes are provided by either group; so further study in this area is required
to guide future practice.
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Fig. 1. Ultrasound assessment of volume status and cardiac function in the ICU uses
a number of different sonographic windows. (A) Left parasternal long axis view. (B) Para-
sternal short axis view. (C) Apical 4-chamber view. (D) Subxyphoid view; caliber can be
measured from the subxyphoid view through the liver. Arrowhead indicates the position
of the marker on the ultrasound transducer. (Adapted from Ferrada P, Murthi S, Anand
RJ, et al. Transthoracic focused rapid echocardiographic examination: real-time evaluation
of fluid status in critically ill trauma patients. J Trauma 2011;70:57, with permission; and
Kirk CR. Thumbnail guide to congenital heart disease. Available at: http://www.crkirk.com/
thumbnail/index.htm; with permission. Accessed December 3, 2011.)

ULTRASOUND-GUIDED INTERVENTIONS

Among trauma ICU patients, the most common ultrasound-guided interventions are
vascular access and drain placement.3® Ultrasound-guided placement of internal jugular lines
has become the standard of care.3® A high-frequency linear array probe is typically used
either for a 1-time view of the target vein or in real time using a 1- or 2-person technique.
Recently, ultrasound-guided subclavian central venous catheter placement has also
been described.®” However, the reliability of the landmark approach and the steep learning
curve for the image-guided approach make ready adoption of this technique unlikely.

If the femoral vein is being considered for short-term access, an ultrasound exam-
ination for patency should be considered, especially in trauma patients in the ICU. In
addition, the relationship of the vein to the artery can be variable, especially in younger
patients, which becomes readily apparent with a quick ultrasound assessment.%8

Ultrasound can also be used for positioning peripherally inserted central catheters
(PICC). This technique was recently described when a survey of the jugular vein
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ipsilateral to the PICG insertion quickly ruled in or out malpositioning of the catheter.>° If
a malpositioned catheter was identified, ultrasound guidance permitted repositioning
of the catheter without procedural interruption.

Arterial cannulation is also facilitated by ultrasound guidance. Radial artery catheter
insertion is made more reliable with this technique using a high-frequency probe. Can-
nulation of the femoral artery can also be guided with ultrasound imaging whether for
arterial line placement or insertion of an access sheath for diagnostic studies or ther-
apeutic interventions.

Ultrasound can also be used to guide fluid aspiration and drain placement in the
ICU. This most commonly includes ultrasound-guided thoracentesis and paracente-
sis. In both instances, ultrasound can be used to mark out the optimal needle insertion
site and to evaluate for completeness of fluid evacuation. In the case of thoracentesis,
ultrasound guidance reduces procedure time, increases the likelihood of accessing
fluid on the first attempt, and reduces complications.*®*' For paracentesis, a low-
frequency probe (eg, 2 MHz) is used to localize the intra-abdominal fluid, after which
the abdominal wall should be assessed by either adjusting the image depth on
a broad-bandwidth probe or by switching to a higher frequency probe (eg, 5 MHz).
This technique facilitates access to the target fluid pocket while minimizing the risk
of injury to the inferior epigastric vessels or abdominal wall varices.3®

Over the past 20 years, use of bedside ultrasound by surgeons for both diagnosis
and management in critically ill trauma patients has grown dramatically. Conse-
quently, surgeons should continue to take a leading role in defining standards for
quality assurance and certification while also continuing to explore new and varied
applications for this technology.

ADVANCES IN ICU MONITORING
Pulmonary Artery Catheter

The pulmonary artery catheter (PAC), once regarded as the gold standard of all hemody-
namic monitors for extremely ill patients, has seen a dramatic decline in use over the past
decade. Multiple well-designed clinical trials have failed to demonstrate any clinical
advantage to its routine use in many populations including general ICU patients, septic
patients, complex postsurgical patients, and those with severe respiratory dysfunc-
tion.#274¢ Likely, this failure to demonstrate any morbidity or mortality benefit is related
to the common error of assuming a pressure measurement is equivalent to volume or
flow.*” Clinicians are also well known to misinterpret the data provided by the
PAC.48-51 Additionally, there are risks to the patient associated with placement and resi-
dence of a catheter within the pulmonary artery, including an increased risk of pulmonary
embolism, bloodstream infections, a catheter-induced hypercoagulable state, and other
technical complications.®27%% Finally, most data generated by the PAC can now be
acquired through other less invasive technologies such as bedside echocardiography,
central venous pressure monitoring, and cardiac electrical velocimetry.

These limitations aside, it is difficult to condemn an entire monitoring modality based
on this evidence. There remain certain patients in whom multiple clinical conditions often
generate an array of conflicting information, leaving the clinician with a confusing clinical
impression. For these situations, an algorithm for the application of the PAC andinterpre-
tation of the data obtained may provide some insight to the patient’s physiology®®;
however, this approach has not been systematically evaluated. Another potential advan-
tage to the PAC is that it lends itself to continuous waveform interpretation, which the
authors use extensively in their preclinical laboratory studies, although no data currently
exist to support this practice in the ICU.
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Waveform Analysis

Multiple physiologic measurements taken in the ICU are acquired with relatively high
sampling rates. These high sampling rates produce data that are far greater in volume
and complexity than the human brain can adequately process and interpret in real
time. Consequently, automated waveform analysis of those physiologic parameters
captured in high granularity has the potential to increase understanding of the
patient’s physiology without adding additional invasive monitors. For example, instead
of examining just the systolic and diastolic blood pressure on the arterial line tracing,
waveform analysis allows interpretation of the change in slopes of the arterial line
tracing, providing far more insight than the raw pressure values alone.

With the exception of fetal heart monitoring in the laboring mother, waveform variability
and complexity analysis technologies have not matured enough to make their way into
routine clinical practice; however, in time, these new technologies will very likely have
a role in triage of trauma patients, prediction of ICU decompensation, and as tools to
assess occult physiologic abnormalities that routinely go undetected with current moni-
toring paradigms.57-8° Monitoring approaches currently under active investigation in the
ICU include plethysmography variability, arterial pressure and heart rate complexity
analysis, continuous noninvasive hemoglobin determination, cardiac electrical velocim-
etry, and multiple vital sign integration with automated interpretation. Fig. 2 illustrates the

Measured
Impedance dZ(t)

——

Fig. 2. Electrical velocimetry for calculating cardiac output. A small sinusoidal current is
passed between a pair of electrodes, and the impedence to electrical flow conducted by
the red cell mass within the thoracic cavity is measured (left). Shown are a representative
electrocardiogram (ECG) tracing, ECG impedance waveform —dZ(t), first derivative of the
impedance waveform dZ(t)/dt, and pulse oximetry waveform SpO,. The first derivative of
the impedance waveform (dZ(t)/dt) is used with an ECG to determine the beginning of elec-
trical systole (Q), aortic valve opening (B), maximal deflection of the dZ(t)/dt waveform (C),
and the closing of the aortic valve (X). Stroke volume and cardiac output are calculated from
these reference points. A high degree of correlation between cardiac output measured by
Doppler and electrical velocimetry has been demonstrated. Abbreviation: LVET, left ventric-
ular ejection time. (Modified from Schmidt C, Theilmeier G, Van Aken H, et al. Comparison
of electrical velocimetry and transoesophageal Doppler echocardiography for measuring
stroke volume and cardiac output. Br J Anaesth 2005;95:606; with permission.)
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principles of electrical velocimetry for measuring cardiac output noninvasively as an
example of the advanced monitoring devices that will be available for use in the ICU in
the near future.

Smart Monitoring, Telemonitoring, and Telepresence

A smart monitor is any monitoring device that provides more information than simply the
measured data. This can include waveform analysis as described previously, spectral
interpretation, integration of multiple inputs, and decision support. This technology likely
has emerged, in part, as a necessity to enable the clinician to integrate far more data than
would otherwise be possible by simply examining an ICU flow sheet or the bedside moni-
tors. One of the most practical applications of smart monitoring is automated decision
support, which has been used for the resuscitation of burn patients and combat casual-
ties.®! Additionally, multiple parameter inputs have already been successfully used in
some ICUs,®? while others have demonstrated the utility of automated integration of
existing vital sign data for triaging trauma patients.®3

Telemonitoring is another example of information integration and oversight that is
gaining interest in modern ICU care. These systems stream all monitoring data
including alarms, imaging studies, electronic medical record data, and often video
images of the patient to an intensivist tasked with evaluating multiple patients. Recent
results suggest this approach improves survival while decreasing cost,?*6% although
others have not corroborated these results.®® This concept can also be extended to
telepresence using various fixed and mobile platforms that virtually bring the intensiv-
ist to the patient’s bedside.?”"°

Decision Assist and Support

By leveraging biomedical engineering expertise and computer technology, various
algorithms and automated bedside protocols have emerged that have the potential
to optimize the delivery of critical care. One such example is the application of various
software solutions to assist bedside nurses in optimizing glucose control in the ICU
(eg, EndoTool, Hospira, Incorporated, Lake Forest, IL, USA). Others include the appli-
cation of computerized decision assist algorithms to help clinicians manage hemor-
rhagic shock, burn shock resuscitation, and sepsis.”! Taking this concept 1 step
further, closed-loop control systems are completely autonomous systems that adjust
therapy based on real-time feedback. Examples of closed loop applications that are
under active investigation for use in critical care include mechanical ventilation, seda-
tion management, and intravenous fluid therapy.”>"°

ADVANCES IN ICU-BASED THERAPIES

The ICU affords the ideal environment to provide support or replacement of failing
organ systems. Gas exchange support through mechanical ventilation has been the
hallmark of ICU care for decades. Now even more advanced and novel therapies
are appearing in ICUs with great regularity. This section focuses on some of these
emerging therapeutic modalities.

Cooling for Neuroprotection

Cerebral anoxia represents the greatest cause of late mortality in patients who initially
survive cardiopulmonary arrest. Consequently, adjuncts to neuroprotection during
the vulnerable postresuscitation period have been the subject of numerous preclinical
and clinical investigations. Following 2 positive prospective, randomized trials demon-
strating a mortality benefit to systemic cooling in comatose survivors of a ventricular
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tachycardia or ventricular fibrillation cardiac arrest, there has been great interest in this
therapeutic modality.”®”7 In the trauma population, extensions of this evidence have
been applied to traumatic brain injury with refractory intracranial hypertension, anoxic
brain injury from near-hanging, and both cold- and warm-water drownings.”2-8°

The use of deep hypothermia after traumatic arrest is another example of this
concept. Animal data suggest a significant survival benefit to this immediate cooling
approach,®'-83 and the first clinical trial is expected to begin shortly.84

Therapeutic hypothermia in an ICU setting is best performed with the aid of a treat-
ment algorithm to ensure the rate of cooling, the target temperature, the duration of
cooling, the rate of rewarming, shivering control, and the frequency of laboratory
draws are standardized. Equipment for performing therapeutic hypothermia consists
of either an invasive or noninvasive thermoregulation device and a temperature probe,
preferably in the esophagus or bladder (Fig. 3). Options for cooling range from ice
packs to gel pads to catheters that fill with temperature-controlled saline. The authors’
preference is to use a cooling catheter that produces very reliable temperature control
during all phases of therapy, reduces the burden of nursing care especially during the
rewarming phase, and minimizes contact with the patient’s vulnerable skin. The cath-
eter should be discontinued after completion of therapy due to a theoretical risk of
thromboembolic complications.

Gas Exchange

Support of both oxygenation and ventilation with a mechanical ventilator has been
a constant in critical care from the very beginning. Although this technology has
evolved from negative pressure ventilators to microprocessor-based equipment
with digital displays, the core concept of using the lungs for gas exchange has never
changed. Advances in the use of this technology include the current standard of lung-
protective ventilation, which has reduced mortality from respiratory failure,® and new
ventilator modes such as airway pressure release ventilation (APRV).8® However, in
patients with severe respiratory failure, even with optimal ventilator management,
up to one-third still die with their disease. Recent clinical evidence and technological
improvements have led to a renewed interest in using extracorporeal gas exchange in

Core Temperature Probe?

/ V(ielPa"-1 ‘xTemperalureComrol
— SN Device Options®

Control
Panel

~

*Control shivering

*Monitor blood gas
O o Monitor electrolytes & glucose
*Protect skin

Fig. 3. Setup for therapeutic hypothermia or active thermoregulation. # Shown are a cooling
gel pad and an invasive thermoregulation catheter as 2 temperature control options. ® Core
temperature can be measured by a pulmonary artery catheter, esophageal probe, bladder
probe, or rectal probe.
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this patient population to avoid barotrauma, volutrauma, and biotrauma while also
permitting early physical therapy.®”

The components of an extracorporeal life support (ECLS) circuit include a mechan-
ical pump, a gas exchange membrane, a heat exchanger, and pressure monitors
(Fig. 4). Venovenous ECLS (vwECLS) is used in most cases of adult respiratory failure,
as it can provide all of the gas exchange needs of most adult patients using modern
membranes made of polymethylpentene (PMP). In select cases of isolated hyper-
capnic respiratory failure, a low-flow arteriovenous pumpless gas exchange circuit
can rapidly normalize the PaCO.. If circulatory support is required, venoarterial
ECLS (vaECLS) becomes necessary.

ECLS can be safely used in adult trauma patients. This advanced therapy should be
donein an experienced center with clearly defined indications for initiating ECLS, estab-
lished treatment protocols, and a staff well versed in ECLS circuit management.®8 In
such centers, this therapy can be applied in patients with high-grade air leaks from
tracheobronchial injuries, large pulmonary emboli with hemodynamic compromise,
and in cases of right heart failure and hypoxemia following lung resection or pneumo-
nectomy for trauma. In cases of severe accidental hypothermia, vwvECLS can rapidly
restore normothermia due to the high blood flow rates and the efficiency of the inte-
grated heat exchanger in modern gas exchange membranes.®®

Extracorporeal Blood Purification

Renal replacement therapy is the most common extracorporeal blood purification
modality used in modern ICUs for the purposes of metabolic and volume management
in the setting of acute kidney injury. Intermittent renal replacement strategies in the
ICU include intermittent hemodialysis (IHD) for hemodynamically stable patients and
sustained low-efficiency dialysis (SLED), a hybrid technique that extends IHD over
a longer period of time, for those who are hemodynamically unstable. Continuous
renal replacement modalities include continuous venovenous hemofiltration (CVVH),
hemodialysis (CVVHD) and hemodiafiltration (CVVHDF). At comparable doses, studies
have failed to demonstrate an advantage of IHD over continuous modalities.®®

Bridge
Connections

Cannula®
Saturation
Monitor

Gas Exchange
Membrane +
Heat Exchanger

Pressure

Monitor

Flow Probe

Pressure
Monitors

Flow Probe +
Bubble Detector

Fig. 4. Schematic of a vwECLS circuit. 2 A double lumen venous cannula (27-31 Fr) for single-
site WECLS is illustrated. ® Optional with a centrifugal pump.
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However, it has become evident that a minimum acceptable dose of therapy exists
and likely needs to be achieved for optimal care. Trying to achieve a higher dose of
therapy with daily IHD and SLED or higher dose CVVHDF has not improved
outcomes.®! Future areas of investigation include patient selection and timing of renal
replacement therapy, identifying alternative and more sensitive biomarkers of renal
injury, and timing of renal replacement therapy termination.

Recently, there has been a paradigm shift among the nephrology and critical care
communities toward broadening the scope of blood purification toward various extra-
renal therapies. Extracorporeal blood purification for the purpose of immune modula-
tion in sepsis and other types of shock, liver support, and combining various
extracorporeal organ support modalities such as lung, kidney and liver into 1 compre-
hensive multiple organ support therapy (MOST) have all been described.®?

WOUND MANAGEMENT

No discussion of paradigm shifts and technological breakthroughs in trauma critical
care would be complete without mention of negative pressure wound therapy. From
open body cavities to fasciotomy incisions, this therapy has transformed both acute
and chronic wound care over the past decade. This approach has been applied to
almost every conceivable wound®® and has proven beneficial in even the austere envi-
ronment of combat casualty care.®*

Damage Control Closure

Temporary closure techniques of the open abdomen have evolved significantly since
the introduction of damage control surgery.®>% When considering an approach to
temporary closure of the abdominal cavity, the following criteria must be met:

e Can be fashioned quickly with readily available supplies

e Underlying organs (eg, bowel, liver), wound edges, and fascial layers are protected
e A sterile dressing is maintained for hours to days

e Effluent from the wound is collected so that it does not macerate the tissues.

Vacuum-assisted closure readily meets all of these principles, and variations on this
approach have been used in a variety of practice settings from resource-limited
trauma centers® and austere combat environments®® to high-volume urban academic
centers, %100

Vacuum-assisted damage control closure of the abdomen can be applied using
either a commercially available product or an expedient setup with supplies commonly
used in the operating room. Two commercially available body cavity closure devices
include the ABThera (Kinetic Concepts, Incorporated, San Antonio, TX, USA) and the
RENASYS-F/AB Abdominal Dressing Kit (Smith & Nephew, Incorporated, St. Peters-
burg, FL, USA). Alternatively, an expedient temporary closure approach for the
abdominal cavity is illustrated in Fig. 5. If definitive closure is contraindicated or
impossible, to avoid loosing abdominal domain, the authors often combine
a vacuum-assisted closure method with some form of low level fascial tension such
as a Wittmann Patch (Starsurgical, Incorporated, Burlington, WI, USA) or a sheet of
mesh that can be serially tightened. In these cases, the authors are careful to maintain
a nonadherent barrier between the bowel and these adjunctive closure devices to
minimize bowel trauma and the risk of developing an enteroatmospheric fistula.

The concept of temporary thoracotomy closure has been recently described and
may become more widely accepted in time.'®! Rather than packing the chest, the
authors prefer to use a modified negative pressure wound closure. In these situations,
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To Suction
(Canister

Heimlich Valve

Layers (superficial to deep)
*loban™ Drape
+2" Blue Towel
*Chest Tube
*1* Blue Towel

*X-ray Casette Cover w/Perforations

Tips
+Clip hair around wound
*Apply benzoin or Mastisol™
*Place the loban™ from “bottom up”

*Heimlich valve helps maintain suction

Fig. 5. Damage control temporary abdominal closure, which protects the bowel, the fascia,
and the skin while controlling and monitoring fluid output. This technique is referred to as
a vacuum pack (VP).

the authors first insert 2 or 3 chest tubes and position them as usual. A sterile nonad-
herent layer such as a single ply radiography cassette cover (without fenestrations) is
then placed over the lung and the chest tubes to partition the intrathoracic space from
the superficial wound space. A negative pressure wound sponge, operating room
towel, or laparotomy pad is then placed in the wound, and suction is applied to this
with either a commercial vacuum system or low-level continuous wall suction (eg,
75-125 mm Hg).

Negative Pressure Wound Therapy

Severely injured patients who require ongoing management in the ICU often have large
wounds. These include fasciotomy wounds, degloving injuries, open fractures, trau-
matic amputation sites, and large torso or perineal wounds. After thorough debride-
ment of devitalized tissue, removal of contamination, and confirming hemostasis,
a vacuum-assisted dressing can be applied to the wound bed. For burn wounds or
abrasions adjacent to wound, the authors apply a layer of XEROFORM petrolatum
gauze (Covidien, Mansfield, MA, USA) to the area and place it in continuity with the
negative pressure dressing. If the wound is significantly contaminated, an active
fungal or mold infection is suspected, or soft tissue viability is questionable, the
authors do not apply a vacuum-assisted dressing at the index procedure and use
gauze dressings instead. In these cases, the authors moisten the gauze with saline,
mafenide acetate (Sulfamylon), or a Sulfamylon/amphotericin mixture depending on
the level of suspicion for infection in the wound.

As with temporary closure of body cavities, a vacuum-assisted dressing is an
interim management strategy that allows stabilization of the wound bed and wound
edges between serial washouts. During this interim period, patients experience less
pain as bedside dressing changes are no longer necessary, and nursing staff can
direct time and attention to other aspects of the patient’s care.

For large wounds or previously contaminated wounds, the authors’ approach is to
return the patient to the operating room in 24 to 72 hours (depending on the appear-
ance of the wound at the last evaluation) for re-examination of the wound, assessment
of muscle and soft tissue viability, additional debridement, and thorough irrigation.
This can also be done in the ICU under sedation, particularly if the patient is tenuous
from a hemodynamic or respiratory standpoint.
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There are several pitfalls with using such a dressing for a large wound:

e Suction failure leading to accumulation of infected fluid in the wound bed
¢ Bleeding into the sponge or canister
e Delayed re-evaluation of the wound, leading to regression of the wound bed.

Manufacturers have attempted to incorporate safety alarms that disable the pump
and alert the care team to a problem if the previously mentioned issues arise.
However, vigilance with frequent reassessment of the dressing and surrounding
tissues and aggressive attention to alarms is always required to ensure safe and effec-
tive negative pressure wound management strategy.%3

The timing of definitive wound closure with either sutures or skin grafting is a matter of
ongoing debate and investigation.'®? In some instances, wound closure by secondary
intention using serial vacuum-assisted dressing changes is deemed optimal. However,
the authors’ approach is more often to close these wounds once the patient’s nutritional
status is optimized, and the wound has healthy edges with no evidence of infection.
Following delayed closure, the authors typically apply a vacuum-assisted incisional
dressing. This can be done with a conventional vacuum dressing or with premade
commercial products for this application (eg, Prevena Incision Management System,
Kinetic Concepts, Incorporated, San Antonio, TX, USA). These dressings consist of
an occlusive dressing placed directly on the wound with small fenestrations for fluid
evacuation. A negative pressure sponge or gauze dressing is then applied over this
layer. The authors remove this dressing in 3 to 5 days and typically transition to no
dressing so long as there is no ongoing drainage from the wound.

EVALUATION AND IMPLEMENTATION OF NOVEL TECHNOLOGIES AND THERAPIES

The evolutionary and revolutionary concepts presented in this article have radically
transformed the overall paradigm of critical care and the trauma ICU environment
over the past decade. In some instances, these changes have occurred after careful
consideration with a relative abundance of clinical evidence (eg, adult ECLS and ther-
apeutic hypothermia for neuroprotection). In others, practical expedience drove the
paradigm shift with very little evidence to support such a radical transition (eg,
vacuum-assisted wound management). Going forward, as new concepts and ideas
emerge, how should the trauma and surgical communities find balance between these
2 extremes? On the 1 hand, introducing unproven technologies on an unsuspecting
public can have disastrous consequences, while on the other, stifling innovation or
burying good ideas in a mire of red tape is counter to the very nature of the specialty
of critical care. The following paragraphs suggest an approach to this dilemma with
regards to evaluating current novel therapies and future innovations in the ICU.

IDEAL Criteria and US Food and Drug Administration Considerations

In 2009, a multidisciplinary commission met at Oxford University to discuss innovation
and advancement in the surgical specialties.'®3-1%% The objective of this commission
was to promote surgical innovation while preventing future technological break-
throughs or innovative therapies from getting beyond a so-called tipping point of
use before being reasonably evaluated. The quintessential example where the latter
occurred was the widespread adoption of laparoscopic cholecystectomy prior to
a careful evaluation of the risks and benefits of this surgical approach. The conclusion
of this commission was that new ideas or evolutionary therapies need to be evaluated
using an IDEAL framework as illustrated in Box 1. Using this approach, ideas that fill
a capability gap or address a clinical need, such as smart monitors or negative
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Box 1
IDEAL Steps for evaluating novel technologies or therapies

Innovation (stages 0-1)
Initial procedures or early application of therapy
Animal studies (stage 0) and human studies (stage 1) explore proof of concept and safety

Informed consent including alternatives (from patient or legally authorized representative
[LAR])

If time permits, inform hospital leadership
Report new procedure or therapy regardless of outcome
Need to develop infrastructure and systems for such reporting
Recent example: pyloric transposition'%®
Development (Stage 2a)
Pilot study for innovation refinement (typically no more than 30 patients)
Protocols should be registered (eg, www.clinicaltrials.gov)
Approval by institutional review board (IRB) and possibly an ethics committee
Informed consent including alternatives (from patient or LAR)
Establish a risk minimization review process (eg, data safety monitoring board)
Report consecutive series of patients without omission
Include selection criteria, denominator of patients potentially eligible, and refinements
Recent example: ileostomy for fulminant Clostridium difficile colitis'®”
Exploration (stage 2b)
Larger possibly multicenter study (typically hundreds of patients in total)
Uniformity of physician implementation across centers is essential
IRB approval and informed consent including alternatives (from patient or LAR)
Learning curve data will become available
Collect data prospectively in a systematic fashion
Report a range of outcomes including technical, clinical, and patient-reported
Report quality control measures applied to ensure uniformity of practice and use of therapy
Report numbers of patients seeking the new therapy if possible
Recent example: minimally invasive esophagectomy'%®
Assessment (stage 3)

Randomized trial to assess effectiveness versus standard therapy

Consider alternative designs if randomized control trial not feasible or ethical (eg, case-
control study)

Recent example: Conventional ventilatory support versus Extracorporeal membrane
oxygenation for Severe Adult Respiratory failure (CESAR) trial for adult ECLS®®

Long-term study (Stage 4)
Assessment of long-term outcomes and surveillance for rare complications
Best accomplished through establishment of a registry

Recent example: endovascular management of blunt aortic injuries'®®
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pressure wound therapy, can be vetted in a systematic fashion without unduly delay-
ing clinical availability if a benefit is demonstrated.

A related matter in the area of technology development that at once hinders the intro-
duction of safe technology in this country while also permitting the introduction of
unproven devices is the Food and Drug Administration (FDA) approval process. At
present, device approval by the FDA for some devices is based on the arcane concept
of legacy approval.’'®1"" This process allows the introduction of technology into the
medical community without first demonstrating safety, much less benefit. In contrast,
if a device is not felt to be substantially equivalent to some already approved device, it
must be evaluated through the premarket approval (PMA) process, which may swing
too far in the other direction of an exorbitantly expensive overevaluation in some cases.
There must be a better, more balanced approach to this process in the future that the
surgical community should demand to ensure new technology is evaluated in a safe,
timely, cost-effective fashion going forward.

Examples

Some of the emerging concepts where the IDEAL framework can be applied are
apparent in the current surgical literature (see Box 1). Examples in trauma manage-
ment include novel resuscitation strategies for exsanguination shock, "2 balloon aortic
occlusion for pelvic or torso trauma with hemodynamic instability,’'1'4 whole blood
transfusion for trauma resuscitation,’'® and rib fracture stabilization.'®
Ineachinstance, an evolutionary or revolutionary idea is being promoted to treat a high-
risk clinical problem with relatively few viable options at present. The challenge is to
responsibly evaluate these concepts with individualized levels of clinical study, often
with the support and oversight of an appropriate national organization. Funding for these
evaluations should consist of a balance of local institutional funds, funds from private
foundations, support from national research institutes, and in some cases industry part-
ners that can and should shoulder some of the burden of expense as is done inthe area of
pharmaceutical development. By following the IDEAL approach, innovation can continue
at an appropriate and safe pace with less risk of finding that costly interventions have no
clinical utility or even worse cause harm only after their widespread implementation.

SUMMARY

This article illustrated the transformation that has occurred in the critical care of the
most severely injured trauma patients. The universal application of bedside ultrasound
imaging has greatly enhanced the ICU toolkit for diagnosis, monitoring, and interven-
tional procedural guidance. Today’s monitors are becoming more focused on deriva-
tive information while also becoming generally less invasive. Temperature regulation is
becoming widely recognized as a valuable treatment strategy, and the ability to target
and maintain a specific temperature or rate of cooling/rewarming has been enhanced
by new technology. Extracorporeal organ support or replacement for gas exchange
and blood purification is becoming more commonplace in ICUs as clinical evidence
for the merits of this approach builds. Finally, the management of open body cavities
and large wounds has been transformed through the application of negative pressure.
As these ideas advance and other ideas emerge, it is imperative that surgeons balance
rapid development with circumspect evaluation of these ideas. Adoption of the IDEAL
framework should make the process of innovation both more systematic and more
streamlined, although significant changes to the FDA approval system are needed
to ensure The United States’ continued place on the cutting edge of critical care
trauma therapy.
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